Continuous production of nitrogen-functionalized graphene nanosheets for catalysis applications.

نویسندگان

  • Kodepelly Sanjeeva Rao
  • Jaganathan Senthilnathan
  • Jyh-Ming Ting
  • Masahiro Yoshimura
چکیده

This study reports the "continuous production" of high-quality, few-layer nitrogen-functionalized graphene nanosheets in aqueous solutions directly from graphite via a two-step method. The initial step utilizes our recently developed peroxide-mediated soft and green electrochemical exfoliation approach for the production of few-layer graphene nanosheets. The subsequent step, developed here, produces nitrogen-functionalized graphene nanosheets via selective alkylation/basic hydrolysis reactions using rather a simple nitrogen precursor bromoacetonitrile, which was never reported in the literature. A possible reaction mechanism of the nitrogen-functionalized graphene formation is proposed. The proposed method allows the quantification of the phenolic and hydroxyl functional groups of anodic few-layer graphene via the derivatization chemistry approach. Additionally, a nitrogen-functionalized graphene-gold nanocrystal hybrid is prepared using gold nanocrystals obtained via the microwave irradiation of H[AuCl4] and trisodium citrate solution. A systematic investigation demonstrates that the nitrogen-functionalized graphene-gold nanocrystal hybrid shows enhanced catalytic reduction of carbonyl compounds such as benzaldehyde.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphotungstic acid supported on functionalized graphene oxide nanosheets (GO-SiC3-NH3-H2PW): Preparation, characterization, and first catalytic application in the synthesis of amidoalkyl naphthols

Grafting of 3-aminopropyltriethoxysilane (APTS) on graphene oxide (GO) nanosheets followed by reaction with phosphotungstic acid (H3PW12O40, denoted as H3PW) gave a new functionalized GO which was characterized using FT-IR, FESEM, EDX, EDX elemental mapping and ICP-OES techniques. The catalytic activity of this nanomaterial containing phosphotungstic counter-anion H2PW12O40¯ (H2PW) which was de...

متن کامل

Treatment of dairy wastewater by graphene oxide nanoadsorbent and sludge separation, using In Situ Sludge Magnetic Impregnation (ISSMI)

The present research investigates the ability of graphene oxide nanosheets for treatment of dairy wastewater, using In Situ Sludge Magnetic Impregnation” (ISSMI) to separate sludge after adsorption process. To increase the interaction between magnetic nanoparticles and graphene oxide, the former has been functionalized, using 3-Aminopropyl triethoxysilane, with the synthesized graphene oxide an...

متن کامل

Treatment of dairy wastewater by graphene oxide nanoadsorbent and sludge separation, using In Situ Sludge Magnetic Impregnation (ISSMI)

The present research investigates the ability of graphene oxide nanosheets for treatment of dairy wastewater, using In Situ Sludge Magnetic Impregnation” (ISSMI) to separate sludge after adsorption process. To increase the interaction between magnetic nanoparticles and graphene oxide, the former has been functionalized, using 3-Aminopropyl triethoxysilane, with the synthesized graphene oxide an...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Voltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite

A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 6 21  شماره 

صفحات  -

تاریخ انتشار 2014